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Abstract

We present a computationally efficient and accurate adjoint method for calculating coupled sensitivities of complex

frequency-domain excitation and emission fluence to any underlying optical parameters in highly scattering media. The

method is shown to be general and accurate. Novel vectorized implementations for finite element global matrix as-

sembly and adjoint sensitivity calculations are shown to speed up calculations by orders of magnitude over traditional

loop implementations, thereby making least-squares approaches to fluorescence tomography computationally prac-

tical.

� 2003 Elsevier Science B.V. All rights reserved.

Keywords: Adjoint sensitivities; Vectorization; Fluorescence tomography; Coupled elliptic equations

1. Introduction

Over the past decade there has been considerable progress made in near infrared (NIR) optical probing

of biological tissues as a means of imaging endogenous differences in tissue properties such as absorption

and scattering [1], particularly for breast cancer imaging [2,3]. The hope is that optical methods will provide

functional information regarding local biochemical environments that will complement structural infor-

mation already achievable by other imaging modalities, such as X-ray and magnetic resonance imaging.
Recently, there has been a growing appreciation for the potential benefits of using exogenously introduced

fluorescing dyes as an efficient means to improve contrast in order to discern small inclusions of disease in

thick tissues [4,5], and work in fluorescence tomography has proceeded in a number of laboratories [6–28].

A variety of receptor-mediated fluorescent dyes under development offer the potential of highly selective
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targeting of diseased tissues that will then fluoresce when excited by impinging NIR light [29–31]. In NIR

fluorescence tomography, the goal is to successfully reconstruct the source of these fluorescent emissions

and thereby characterize the size and location of diseased tissues. We restrict our discussions to frequency-

domain techniques, although our results are readily translated into the time domain via Fourier transforms.

In frequency-domain photon migration through tissues, sinusoidally intensity-modulated NIR ‘‘exci-

tation’’ light is launched into the tissue at the surface. During transit through the tissues, photons are

absorbed and scattered owing to the local tissue optical properties and their spatial variations. The intensity

wave that is detected at a number of positions on the tissue surface is therefore phase-delayed ðhÞ and
amplitude attenuated ðaÞ relative to the incident light. In the near-infrared range (700–900 nm) there exists
a so-called ‘‘therapeutic window’’ where optical absorption, due mainly to water and hemoglobin, is rel-

atively low, and the photon density wave can travel several centimeters before it is completely attenuated,

although it is still highly scattered. When light is absorbed by fluorophore that is present in the tissue, the

fluorophore is elevated to an excited state and remains there for some period of time (the fluorescence

lifetime, s). Some proportion of the excited molecules (the fluorescence quantum efficiency, /) will ulti-
mately release their excess energy by emitting a photon as they drop back to the ground state. This creates

an ‘‘emission’’ photon density wave that is also scattered and absorbed before it reaches the detectors on the
tissue surface, where it can be separated from the excitation photon density wave via interference filters.

In addition to an accurate forward model of coupled excitation and emission light propagation through

highly scattering media, frequency-domain fluorescence tomography in tissues requires an inverse method

for using noisy measurements of excitation and/or emission phase-delays and/or amplitude attenuation to

reconstruct interior optical property maps of the tissues. Because of the high degree of scattering, most

approaches to fluorescence tomography in large tissue volumes are based on regularized nonlinear least-

squares optimization, such as the Levenberg–Marquardt method [11] or the Bayesian approximate ex-

tended Kalman filter [8]. Central to these methods is the repeated computation of Jacobian sensitivity
matrices quantifying the effects of local changes in optical properties on the detected fluence. The focus of

this paper is on development of a rapid and accurate methodology for computation of these sensitivities.

Previous approaches to computing emission sensitivities include first-order finite differences [6], second-

order finite differences [7], and an approximate adjoint approach [8,10,11]. In finite difference approxi-

mations to the Jacobian, an optical parameter p is perturbed by some small amount dp and the resulting
perturbed fluence ðU þ dUÞ is explicitly evaluated by a forward simulator. For example, a first-order finite
difference approximation is computed by

oU
op

�1st orderUðp þ dpÞ � UðpÞ
dp

: ð1Þ

If the size of the perturbation is chosen carefully, finite difference approximations can be very accurate, but

in either case if the parameter p has been spatially discretized (e.g., into nodes or elements), then Eq. (1)
must be recalculated for each discrete location in the domain. For large, 3-D domains this is computa-

tionally impractical. Nonetheless, finite difference approaches are very flexible and easily implemented for

any optical property and any (directly or indirectly) measurable quantity, and they have been used for

estimating the sensitivities of various components (e.g., phase and/or amplitude) of fluence at excitation

and/or emission wavelengths, relative to absorption, scattering, fluorescence lifetime, and fluorescence

quantum efficiency [6].

Adjoint methods [32,33] have been previously applied separately to the excitation equation [34,35] and to

the emission equation [10,11]. This latter results in an approximate adjoint Jacobian that can be used for
fluorescence tomography. While relatively fast, it makes the potentially limiting assumptions that the

diffusion coefficient at emission wavelengths is spatially smooth and that the sensitivity is linear with respect

to fluorescence absorption. In this paper, we apply the adjoint approach to the more complicated coupled

system of excitation and emission equations describing fluorescent light generation and emission, in order
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to derive the exact adjoint sensitivities of the coupled complex frequency-domain excitation and emission

fluence relative to any of the underlying optical properties. We develop computational forms of the adjoint

sensitivity equations using the Galerkin finite element method, and propose a novel computational im-

plementation of these equations that is highly vectorized and manages memory requirements through

domain decomposition. Computational results validate the accuracy and computational efficiency of our

approach. Finally, we mention other physical problems modeled with coupled elliptic partial differential

equations that could benefit from a similar approach.

2. Governing equations

The generation and propagation of fluorescent light through highly scattering media (such as biological

tissues) is often modeled by a pair of second order, coupled, elliptic, partial differential equations [36–38].

The first equation represents propagation of excitation light (subscript x) and the second models the

generation and propagation of fluorescently emitted light (subscript m). In the frequency domain, these

diffusion approximations to the coupled radiative transport equation over a three-dimensional (3-D)
bounded domain X are

�r � DxrUxð Þ þ kxUx ¼ Sx
�r � DmrUmð Þ þ kmUm ¼ bUx

�
on X ð2Þ

subject to the Robin boundary conditions on the domain boundary oX of

n!� DxrUxð Þ þ bxUx ¼ 0

n!� DmrUmð Þ þ bmUm ¼ 0

�
on oX; ð3Þ

where r is the 3
 1 grad operator and n! is the 3
 1 vector normal to the boundary. The excitation light

source Sx (W=cm3) is intensity modulated with sinusoidal frequency x (rad/s), and propagates through the
media resulting in the AC component of complex photon fluence at the excitation wavelength of

UxðW=cm2Þ, where Ux ¼ axeihx . Some of this excitation light may be absorbed by fluorophore in the media
and reemitted, resulting in complex photon fluence at the emission wavelength Um ¼ ameihm . The diffusion
ðDx;mÞ, decay ðkx;mÞ, and emission source ðbÞ coefficients, as shown below

Dx ¼ 1

3 laxiþlaxfþl0sxð Þ ;
Dm ¼ 1

3 lamiþlamfþl0smð Þ ;

8<: kx ¼ ix
c þ laxi þ laxf ;

km ¼ ix
c þ lami þ lamf ;

�
b ¼

/laxf
1� ixs

; ð4Þ

are functions of absorption due to non-fluorescing chromophore ðlaxi; lamiÞ, absorption due to fluorophore
(laxf ; lamf ), and isotropic (reduced) scattering (l0

sx; l
0
sm) at the two wavelengths (all in units of cm�1), flu-

orescence quantum efficiency ð/Þ, and fluorescence lifetime (s, in s). Here, i ¼
ffiffiffiffiffiffiffi
�1

p
, and c is the speed of

light in the media (cm/s). The Robin boundary coefficients ðbx; bmÞ are governed by the reflection coefficients
ðRx;RmÞ, which range from 0 (no reflectance) to 1 (total reflectance)

bx ¼
1� Rx

2ð1þ RxÞ
; bm ¼ 1� Rm

2ð1þ RmÞ
: ð5Þ

In NIR fluorescence imaging, where excitation and emission wavelengths are relatively close to one

another, the absorption and scattering at emission wavelengths can be approximated as linear functions of
absorption and scattering at excitation wavelengths. Although not explicitly shown in these equations, all

optical properties and field variables are understood to be potentially variable in Cartesian space.
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2.1. Matrix notation for the coupled equations

For brevity, we represent the coupled governing equations (2) with the following single matrix equation:

�rTðDrUÞ þ kU ¼ S on X: ð6Þ

Similarly, the boundary conditions (3) are represented by the matrix equation

nTðDrUÞ þ bU ¼ 0 on oX: ð7Þ

In (6) and (7), we use the following matrix definitions (sizes of each matrix are shown for clarity):

r
ð6
2Þ

¼ r 0

0 r

� �
; n

ð6
2Þ
¼ n! 0

0 n!
� �

; D
ð6
6Þ

¼ DxI 0

0 DmI

� �
;

k
ð2
2Þ

¼ kx 0

�b km

� �
; b

ð2
2Þ
¼ bx 0

0 bm

� �
;

U
ð2
1Þ

¼ Ux

Um

� �
; S

ð2
1Þ
¼ Sx

0

� �
:

8>>>>>>>><>>>>>>>>:
ð8Þ

3. Adjoint sensitivity formulation

3.1. Perturbation equations

Consider that p is any optical property either directly or indirectly embedded in Eq. (6) or (7). E.g.,

p 2 laxf ; laxi; l
0
sx; lamf ; lami; l

0
sm; s;/;Rx;Rm; . . .

	 

: ð9Þ

An infinitesimally small perturbation of the parameter dp will cause a corresponding variation in fluence
dU

p ! p þ dp ) U ! U þ dU ð10Þ

such that the system

�rT D pð
�

þ dpÞr Uð þ dUÞ
�
þ k pð þ dpÞ Uð þ dUÞ ¼ S on X; ð11Þ

nT D pð
�

þ dpÞr Uð þ dUÞ
�
þ b pð þ dpÞ Uð þ dUÞ ¼ 0 on oX ð12Þ

is satisfied. Using a Taylor series expansion of all terms in (11) and (12) yields the following

first-order perturbation equations governing the variation dU, where we have ignored higher order

terms Oðdp2Þ:

�rT DrdU
� �

þ kdU ¼ rT
oD

op
dprU

 �
�
ok

op
dpU on X; ð13Þ

nT DrdU
� �

þ bdU ¼ �nT
oD

op
dprU

 �
�
ob

op
dpU on oX: ð14Þ
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One could solve the system (13) subject to (14) in order to get a first-order approximation of the

sensitivity of U with respect to p. As with the finite difference approach, if p has been spatially discretized
this would require solving system (13) once for each locally discrete region of p. We will now apply the

adjoint method [32,33] in order to reduce the number and size of the systems of equations that must be

solved.

3.2. Analytical adjoint sensitivities

To derive the sensitivities by an adjoint method, we first define a matrix of functions W as

W
ð2
2Þ

¼ Wxx Wxm

Wmx Wmm

� �
; ð15Þ

and choose W such that it satisfies the following system of equations that we will refer to as the adjoint

system of (6)

�$T DTrW
� �

þ kTW ¼ Dd on X;

nT DTrW
� �

þ bTW ¼ 0 on oX;

8<: where Dd

ð2
2Þ

¼ Dd 0

0 Dd

� �
: ð16Þ

We multiply the system (13) by WT and integrate over the entire domain X to getZ
X

WT
�
�rT DrdU

� �
þ kdU

�
¼
Z

X
WT rT

oD

op
dprU

 �
�

ok

op
dpU

�
: ð17Þ

Integrating by parts twice, applying the boundary conditions (14), and rearranging terms, we get

Z
X

� $T DTrW
� �

þ kTW
� �Tzfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Dd

dU ¼
Z

X
WT rT

oD

op
dprU

 � �
�
Z

X
WT

ok

op
dpU

þ
Z
oX

WT


� nT

oD

op
dprU

 ��
�
Z
oX

WT
ob

op
dpU

�
Z
oX

nT DTrW
� �

þ bTW

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{0

dU: ð18Þ

As indicated above the terms in Eq. (18), we can simplify by substituting Eqs. (16) to get the following

simplified equation:

dU ¼
Z

X
WT rT

oD

op
dprU

 � �
�
Z

X
WT

ok

op
dpU þ

Z
oX

WT


� nT

oD

op
dprU

 ��
�
Z
oX

WT
ob

op
dpU:

ð19Þ

Integrating the first term of Eq. (19) by parts once more, rearranging, and canceling terms, we are left with

the following three terms:

dU ¼ �
Z

X
rW
� �T oD

op
dprU

 �
�
Z

X
WT

ok

op
dpU

 �
�
Z
oX

WT
ob

op
dpU

 �
: ð20Þ
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Since the solution to system (16) depends on p; but not on the variation dp, this system only needs to be

solved once for W for a given set of parameter values. Eq. (20) can then be used to compute desired sen-

sitivities to any underlying optical properties. The matrix W thus represents the solutions to the adjoint

system (16), in response to a Dirac source located at each of the detectors d. We refer to W as the adjoint or

Green matrix of the coupled system.

Now, let us take a closer look at the matrix W: The matrix system (16) is simply a compact representation

of the following four boundary value problems:

�r � DxrWxxð Þ þ kxWxx � bWmx ¼ Dd on X;
~nn � DxrWxxð Þ þ bxWxx ¼ 0 on oX;

�
ð21Þ

�r � DxrWxmð Þ þ kxWxm ¼ bWmm on X;
~nn � DxrWxmð Þ þ bxWxm ¼ 0 on oX;

�
ð22Þ

�r � DmrWmxð Þ þ kmWmx ¼ 0 on X;
~nn � DmrWmxð Þ þ bmWmx ¼ 0 on oX;

�
ð23Þ

�r � DmrWmmð Þ þ kmWmm ¼ Dd on X;
~nn � DmrWmmð Þ þ bmWmm ¼ 0 on oX:

�
ð24Þ

Note that Eq. (23) admits only the trivial solution; that is, Wmx ¼ 0: It can admit a non-vanishing
solution if and only if the coefficient km is an eigenvalue k of the equation, i.e., �r � ðDmrWmxÞþ
kWmx ¼ 0. The latter equation admits real positive eigenvalues since it represents wave phenomena

where resonance can occur. Since we are dealing with a diffusion process, km is a complex number

and cannot be an eigenvalue, therefore only the trivial solution is admissible. The fact that Wmx ¼ 0

reflects the asymmetry in the coupled governing equations (2); that is, Ux affects Um, but not vice

versa.

The adjoint sensitivities represented in Eq. (20) can be decomposed into the sensitivity equations for

excitation and emission fluence. For example, the sensitivity of excitation fluence is

dUx ¼ �
Z

X
rWxx

oDx

op
dprUx �

Z
X

Wxx
okx
op

dpUx �
Z
oX

Wxx
obx
op

dpUx; ð25Þ

which is identical to the adjoint formulation for excitation fluence reported elsewhere (where obx=op ¼ 0)

[1]. The sensitivity for emission fluence in the coupled system is a new result, as follows:

dUm ¼ �
Z

X
rWmm

oDm

op
dprUm �

Z
X

Wmm
okm
op

dpUm �
Z
oX

Wmm
obm
op

dpUm �
Z

X
rWxm

oDx

op
dprUx

�
Z

X
Wxm

okx
op

dpUx �
Z
oX

Wxm
obx
op

dpUx þ
Z

X
Wmm

ob
op

dpUx: ð26Þ

The previously proposed approximate adjoint approach [10,11] is equivalent to only the last term in Eq.
(26) when Dm is smooth. We shall refer to the sensitivies (25) and (26) as analytical adjoint sensitivities

because they are the exact analytical sensitivities assuming the exact Green matrix is known. However,

analytical solutions for the Green matrix are only available for simplified geometries and constant coeffi-

cients, so if a discrete numerical formulation is adopted in order to approximate the Green matrix, the

resulting sensitivities also become only approximate.
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4. Finite element formulation

4.1. FEM for governing equations of excitation and fluorescence

The method of weighted residuals is used as the basis for the finite element method (FEM) [39]. We in-

troduce on the domain X a three-dimensional grid � with n nodes and boundary oX: Over the entire
domain X, we approximate a continuous (possibly complex) field variable u with the finite functional space
V ðXÞ as

V ðXÞ ¼ fbuu 2 C0ðXÞ; buuje: is a polynomial;
where e is a generic element in � . We define a basis for VhðXÞ as ½N� ¼ ½N1;N2; . . . ;Nn�. The generic basis
elements are defined such that Niðxj; yj; zjÞ ¼ dij . By means of these basis functions, we approximate a ge-

neric field variable u as u � buu ¼ ½N�½u�, where ½u� is a column vector of the nodal values of the function u. In
particular, the complex field variables Ux and Um are approximated as

Ux � ÛUx ¼ ½N�½Ux�;
Um � ÛUm ¼ ½N�½Um�:

ð27Þ

We use the Galerkin Finite Element Method (GFEM) [39], in which the weight functions are ½N�T, and
hence the weighted residual forms of the governing equations (2) areZ

X
N½ �T
�
�r � DxrÛUx

� �
þ kxÛUx

�
¼
Z

X
N½ �TSx;Z

X
N½ �T
�
�r � DmrÛUm

� �
þ kmÛUm

�
¼
Z

X
N½ �TbÛUx:

ð28Þ

Integration by parts of the second-order terms yields:Z
X

r N½ �ð ÞTDxrÛUx þ
Z

X
N½ �TkxÛUx �

Z
oX

N½ �T n!� DxrÛUx

� �� �
¼
Z

X
N½ �TSx;Z

X
r N½ �ð ÞTDmrÛUm þ

Z
X

N½ �TkmÛUm �
Z
oX

N½ �T n!� DmrÛUm

� �� �
¼
Z

X
N½ �TbÛUx:

ð29Þ

Introducing the Robin Boundary conditions of Eq. (3) yieldsZ
X

r N½ �ð ÞTDxrÛUx þ
Z

X
N½ �TkxÛUx þ

Z
oX

N½ �TbxÛUx ¼
Z

X
N½ �TSx;Z

X
r N½ �ð ÞTDmrÛUm þ

Z
X

N½ �TkmÛUm þ
Z
oX

N½ �TbmÛUm ¼
Z

X
N½ �TbÛUx:

ð30Þ

Introducing the approximations (27) and Sx ¼ ½N�½Sx� (where ½Sx� represents nodal values of Sx) after
collecting common terms we finally have in block form:

A½ � U½ � ¼ S½ �; ð31Þ

where we have defined the block vectors

U½ � ¼ Ux½ �;
Um½ �

� �
; S½ � ¼ M½ � Sx½ �

0½ �

� �
ð32Þ
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and block matrix

A½ � ¼ Ax½ � 0½ �
� Mb

� �
Am½ �;

� �
ð33Þ

where

Ax½ � ¼ AðDx; kx; bxÞ; ð34Þ

Am½ � ¼ AðDm; km; bmÞ; ð35Þ

M½ � ¼ Mð1Þ; ð36Þ

Mb

� �
¼ MðbÞ ð37Þ

with the following matrix function definitions:

AðD; k; bÞ ¼
Z

X
r N½ �ð ÞTDr N½ �

� �
þ

Z
X

N½ �Tk N½ �
� �

þ
Z
oX

N½ �Tb N½ �
� �

; ð38Þ

MðbÞ ¼
Z

X
N½ �Tb N½ �

� �
: ð39Þ

These equations are general in the sense that any type of finite element can be used. In order to model tissue

domains that are 3-D and irregular in shape, we employ linear tetrahedral elements each of which have four

nodes. At the element level, the explicit matrices have the following dimensions:

½N�
ð1
4Þ

¼ N1 N2 N3 N4½ �; r N½ �
3
4ð Þ

¼

oN1
ox

oN2
ox

oN3
ox

oN4
ox

oN1
oy

oN2
oy

oN3
oy

oN4
oy

oN1
oz

oN2
oz

oN3
oz

oN4
oz

264
375: ð40Þ

In general, any of the nodally discretized coefficients (Dx;m; kx;m; bx;m; and b) can have directional de-

pendency and are thus properly represented by 3
 3 matrices (second-order tensors). For our application
we assume isotropic (but not homogeneous) conditions. As such, we implement nodal values of Dx;m, kx;m,
bx;m; and b as scalars. The inhomogeneity of optical properties means that even the scalar representations of
Dx;m, kx;m, bx;m, and b can vary over an element. If these coefficients are represented by nodal values, then it is
customary to use the same basis function expansions Ni to represent the value of the coefficients at any

point in the element, e.g. Dx � ½N�½Dx�, where ½Dx� is a 4
 1 vector of nodal values for the tetrahedral

element. However, if the elements are sufficiently small they can be treated as homogeneous in order to

simplify the computational procedures, as described later.

4.2. FEM for continuous adjoint equations of the coupled governing equations

We again employ the GFEM method, this time to the adjoint Eqs. (21)–(24). We use the approximation

for the Green matrix W as

W � ŴWxx ŴWxm

ŴWmx ŴWmm

� �
¼ N½ � 0½ �

0½ � N½ �

� �
Wxx½ � Wxm½ �
Wmx½ � Wmm½ �

� �
; ð41Þ
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where ½Wxx�; ½Wxm�; ½Wmx�; ½Wmm� are the nodal values of the respective field approximations ŴWxx, ŴWxm, ŴWmx,

ŴWmm. We thus have the following set of discretized equations:

Ax½ � Wxx½ � ¼ Dd½ �; ð42Þ

Ax½ � Wxm½ � ¼ Mb

� �
Wmm½ �; ð43Þ

Am½ � Wmm½ � ¼ Dd½ �; ð44Þ

or in block form

~AA
h i

W½ � ¼ D½ �; ð45Þ

where we have defined the block matrices

~AA
h i

¼ Ax½ � � Mb

� �
0½ � Am½ �

� �
ð46Þ

and

W½ � ¼ Wxx½ � Wxm½ �
0½ � Wmm½ �

� �
; D½ � ¼ Dd½ �

0½ �
0½ �;
Dd½ �

� �
: ð47Þ

In agreement with the previous observation that Wmx ¼ 0 for the continuous equation (23), ½Wmx� ¼ ½0�
for the discrete equation, as explicitly indicated in (47). Because each individual partial differential equation

of the coupled system (2) is self-adjoint, and because the finite element matrices generated by (38) and (39)

are symmetric, the kernal (46) of the adjoint system (45) is the transpose of the kernal (33) of the forward
system (31). That is,

~AA
h i

¼ A½ �T: ð48Þ

4.3. FEM formulation of the analytical sensitivity of Ux and Um

Applying the GFEM to Eq. (20) yields

dU½ � ¼ � W½ �T dA½ � U½ � ð49Þ

in which

dU½ � ¼ dUx½ �d
dUm½ �d

� �
and dA½ � ¼ A dDx; dkx; dbxð Þ 0½ �

�M dbð Þ A dDm; dkm; dbmð Þ

� �
ð50Þ

at detectors d, where

dDx;m ¼ oDx;m

op
dp; dkx;m ¼ okx;m

op
dp; dbx;m ¼ obx;m

op
dp; db ¼ ob

op
dp: ð51Þ

In Eqs. (51), the analytic expressions for the partial derivatives are employed. For example, the analytic

expression for oDx=olaxf is
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oDx

olaxf
¼ o

olaxf

1

3 laxi þ laxf þ l0
sx

 ! !
¼ � 1

3 laxi þ laxf þ l0
sx

 !2 : ð52Þ

4.4. Adjoint sensitivities by the discrete formulation

The expression (49) has been obtained by applying the GFEM to the continuous equation (20) of the

analytical variation dU, where a GFEM approximation of the analytical Green matrix W has been used; we

will refer to this as the ‘‘continuous’’ formulation of the adjoint sensitivities. Alternatively, we can apply the
adjoint method directly to the discretized forward equations (31), a method we will refer to as the ‘‘discrete’’

formulation of the adjoint sensitivities.

The finite element matrices in (33) depend upon the generic parameter p; if we vary p as p þ dp; ½U� will
vary as ½U� þ ½fdUdU�; and the latter still must satisfy Eq. (31). Using a Taylor-series expansion on (31) with
respect to the parameter p and neglecting higher order terms one gets

A½ �ð þ dA½ �Þ U½ �
�

þ fdUdU
h i�

¼ S½ � þOðdpÞ; ð53Þ

where ½dA�is expressed as in (50). This gives, up to first order in dp;

A½ � fdUdU
h i

¼ � dA½ � U½ �: ð54Þ

Multiplying by the transpose of an arbitrary block matrix ½ ~WW� one gets

~WW
h iT

A½ � fdUdU
h i

¼ � ~WW
h iT

dA½ � U½ � ð55Þ

or equivalently

fdUdU
h iT

A½ �T ~WW
h i

¼ � ~WW
h iT

dA½ � U½ �: ð56Þ

Choosing

A½ �T ~WW
h i

¼ D½ �; ð57Þ

where ½D� is the discrete delta Dirac matrix as in (47), gives

fdUdU
h i

¼ � ~WW
h iT

dA½ � U½ �: ð58Þ

Because property (48) holds, this implies from (57) that

~WW ¼ W

and consequently from (58)fdUdU ¼ dU: ð59Þ

Thus, the continuous and discrete FEM formulations of the adjoint sensitivities are, in this case,
equivalent. If the continuous operators we are dealing with were not self-adjoint, or if the discretized

matrices were not symmetric, the continuous and discrete formulations of the sensitivities would differ. If

the spatial discretization is done using finite differences rather than finite elements, certain discretizations of
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the boundary elements can lead to asymmetric matrices. For example, let us consider a 1-D problem on the

domain X ¼ ½0; L�; let Dx ¼ L=nx; where nx is the number of sub-intervals. We now define a uniform mesh

Xx ¼ fxi; 06 i6 nxg, where xi ¼ iDx. The first-order finite difference approximation of the Robin boundary
conditions ðdf =dxÞ þ rf j0;L ¼ 0gives the following boundary matrix:

� 1
Dxþ r 1

Dx 0 � � � 0 0

0 0 0 � � � 0 0

� � � � � � � � �
� � � � � � � � �

0 0 0 � � � � 1
Dx

1
Dxþ r

266664
377775 ð60Þ

which is clearly asymmetric implying the breakdown of the property (48), with the result that the discrete

and continuous formulations will not be equivalent for this finite difference formulation.

5. Vectorized implementation

Both the forward finite element equation (31) and adjoint finite element equation (45) are implemented

using a highly vectorized approach in Matlab (Version 6.1 [40]), optimizing for computational speed at the

expense of memory. Memory demands are kept manageable through domain decomposition. We outline

the main points of our vectorization strategy here.

5.1. Combined forward and adjoint solutions

We can combine the forward and adjoint problems into the following cascade of solutions:

Am½ �
n
nð Þ

Wmm½ �
n
dð Þ

¼ ½Dd �
n
dð Þ

;

Ax½ �
n
nð Þ

Ux; Wxx; Wxm½ �
n
 1þ2dð Þð Þ

¼ ½ M½ � Sx½ �; Dd ; Mb

� �
Wmm½ � �

n
 1þ2dð Þð Þ
;

Am½ �
n
nð Þ

Um½ �
n
1ð Þ

¼ ½ Mb

� �
Ux½ ��

n
1ð Þ
:

8>>>>>>><>>>>>>>:
ð61Þ

The dimensions are indicated below each matrix, for a system with d detectors, a single excitation light
source, and where the dimensionality of the parameterization is n nodes. Note that ½Dd � represents the
discrete Dirac delta matrix for the detectors; i.e., each column is all zeros except for a 1 in the row cor-

responding to a detector location. We solve the complex systems of equations in (61) using Matlab�s
conjugate gradient squared method (cgs.m).

5.2. Vectorization of global FEM matrix assembly

In any finite element method, the global matrices must be assembled from the local element matrices (in

the case of tetrahedral elements, these are 4
 4 matrices for internal volume elements and 3
 3 matrices

for triangular surface elements), as indicated by the domain and surface integrals required for computation

of Eqs. (34), (35), and (37). In conventional implementations, this assembly is performed by looping over

each local element matrix and adding its contents into the appropriate locations in the global matrix. For

realistically sized 3-D problems, the loop method of global matrix assembly is a computational bottleneck,
especially in parameter estimation problems such as tomography, where the global matrices must be

reassembled every time the underlying parameters are updated.
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We propose a more computationally efficient approach that uses vectorization to facilitate pipelining in

the microprocessor architecture. In this approach, we perform a one-time construction of 3-D matrices that

contain the constant kernals Ktype of each of the distinct types of element matrices as follows:

Kstiffness
4
4
nvelð Þ

¼
R

Xe
r N½ �ð ÞTr N½ �

h i
4
4ð Þ

. . .�
�

1::nvelð Þ
;

Kmass
4
4
nvelð Þ

¼
R

Xe
N½ �T N½ �

h i
4
4ð Þ

. . .�
�

1::nvelð Þ
;

Kboundary

3
3
nselð Þ
¼

R
oXe

N½ �T N½ �
h i

3
3ð Þ

. . .�
�

1::nselð Þ
;

8>>>>>>>><>>>>>>>>:
ð62Þ

where the volume and surface integrals appearing in (62) have been evaluated exactly and nvel is the

number of volume elements, nsel is the number of surface elements, Xe is the volume of element e, and oXe

is the surface area of element e. Note that in Eqs. (62) each 2-D plane of these 3-D matrices corresponds to

a (volume or surface) element in the finite element mesh. This idea of pre-calculating the kernal matrices is

similar to an approach that has been previously applied to piecewise constant elemental coefficients [41]. We

also prespecify index vectors that correctly associate each position in these 3-D kernal matrices with their

corresponding nodal locations in the global matrices. For example, Iv and Jv, each of length ð16 � nvelÞ, are
replicated and expanded from the adjacency matrix denoting which four nodes are connected to each el-
ement, as shown in Fig. 1. Expanded index vectors Is and Js of length ð9 � nselÞ are constructed similarly
from the matrix specifying which three nodes are connected to each surface element. Whenever it is time to

assemble a global matrix, we do the following: (i) convert nodally based coefficients C, where C 2 fDx;m;
kx;m; bx;m; bg; to elementally based coefficients Ce, (ii) multiply the kernals defined in Eqs. (62) by the ap-

propriate elemental parameter coefficients Ce, as specified in Eqs. (34), (35), (37), and sum them up to yield

the 3-D local element matrices, and (iii) use the preconstructed index vectors to add the values from all local

element matrices directly into the sparse global matrix.

Construction of a generic local 3-D element matrix L from elemental coefficients Ce and generic kernal
matrix K assembly of a generic global matrix G can be written in pseudo-code (using the Matlab notations

for element-by-element multiplication (.*), matrix slicing (:), and creation of a sparse matrix) as follows:

Lði; j; :Þ
for i¼1::4; for j¼1::4ð Þ

¼ Ce
1
nvelð Þ

: � Kði; j; :Þ
1
nvelð Þ

G
n
nð Þ

¼ sparseðIv; Jv; Lð:Þ
1
4�4�nvelð Þ

; n; nÞ

8><>: ð63Þ

and is graphically depicted in Fig. 1.

Assembly of specific global matrices generalizes the method shown in pseudo-code (63) for all three

kernal matrices (62). For example, to construct the global matrix Ax (34), the pseudo-code is

Lvði; j; :Þ
for i¼1::4; for j¼1::4ð Þ

¼ Dx
1
nvelð Þ

: � Kstiffnessði; j; :Þ
1
nvelð Þ

þ kx
1
nvelð Þ

: � Kmassði; j; :Þ
1
nvelð Þ

;

Lsði; j; :Þ
for i¼1::3; for j¼1::3ð Þ

¼ bx
1
svelð Þ

: � Kboundaryði; j; :Þ
1
svelð Þ

;

Ax
n
nð Þ

¼ sparseðIv; Jv; Lvð:Þ
1
4�4�nvelð Þ

; n; nÞ þ sparseðIs; Js; Lsð:Þ
1
3�3�nvelð Þ

; n; nÞ:

8>>>><>>>>:
It should be noted that the assumption of homogeneity within elements introduces a small numerical

error into the mass and boundary matrices that is linearly proportional to the difference in nodal values

attached to each element. If elements are not small enough to be safely approximated as homogeneous,

there is no need to convert nodally based coefficients to elementally based coefficients as we have described
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here. Rather, four versions of the Kmass and Kboundary kernal matrices can be preconstructed, one for each of
the four basis functions, as follows:

Ki
mass

4
4
nvelð Þ
¼

R
Xe

N½ �TNi N½ �
h i

4
4ð Þ

:::�
�

1::nvelð Þ

Ki
boundary

3
3
nselð Þ
¼

R
oXe

N½ �TNi N½ �
h i

3
3ð Þ

:::�
�

1::nselð Þ

9>>>=>>>; for i ¼ 1::4: ð64Þ

Each of the matrices in (64) are then multiplied by the corresponding nodal values associated with each

element, and summed up to yield the 3-D local element matrices L. This latter method introduces no

Fig. 1. A depiction of the canonical vectorized operations implemented for assembly of local 4
 4 FEM matrices into an n
 n global
FEM matrix G. The preconstructed generic kernal matrix K represents either Kstiffness or Kmass: The operations for Kboundary are similar

but with dimensions 3 rather than 4.
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numerical errors in the integrations at the expense of slightly greater computational requirements; the

trade-off between these two methods must be determined by the applications programmer.

5.3. Vectorization of sensitivity calculations

As indicated by Eqs. (49) and (50), after solution for the adjoint variables Wxx;Wxm;Wmm calculation of

any desired sensitivities reduces to a series of matrix multiplications of the general form

oU
opðiÞ
d
1ð Þ

¼ W½ �T
d
nð Þ

GðdCÞ½ �
n
nð Þ

U½ �
n
1ð Þ

for i ¼ 1::n; ð65Þ

whereGðdCÞ is a generic global FEMmatrix constructed from the analytical derivatives of generic coefficient

C, where C 2 fDx;m; kx;m; bx;m; bg; as shown in Eq. (51). We shall use nodally based parameters. Assuming that

the parameter p has been discretized for n nodes (so pðiÞ is the discrete value of the parameter for node i), the
sizes of the matrix factors in the terms of the form (65) are as indicated above, for a system with d detectors
and 1 source. The sensitivities oU=opðiÞ need to be evaluated for each of the i ¼ 1::n nodes in order to

compute each of the n columns of the final ðd 
 nÞ Jacobian matrix. One could simply loop through for each
node, assembling each matrix of the formGðdCÞ and evaluating each term of form (65). However, as with the

loop method for matrix assembly, this can be very slow for large meshes. We therefore consider an alter-

native vectorized approach for computing these matrix products over the entire domain.

While each assembled factor GðdCÞ is a sparse matrix populated by just the element matrices for those
elements attached to node i, the number of such elements varies for each node i, and consequently the
structure of the sparse matrix varies for each node evaluation. For example, the locations of non-zero

entries in global matrices G for two arbitrary nodes in a breast-shaped finite element mesh are shown in Fig.

2. This variability in the number of elements attached to each node inhibits direct vectorization of the loop

in (65) that performs the matrix multiplications for all nodes. On the other hand, each volume element is

attached to exactly four nodes. Consequently, we developed a vectorized method for first computing the

elemental sensitivities and then converting them to nodal sensitivities. We compute sensitivities for all

volume elements (assuming, for simplicity in this pseudo-code, that ob=op ¼ 0) as follows:

Lði; j; :Þ
1
nvelð Þ

¼ Kði; j; :Þ
1
nvelð Þ

: � oC
op

))))
e

1
nvelð Þ

for i ¼ 1::4; for j ¼ 1::4; ð66Þ

Fig. 2. Locations of non-zero entries in global matrices of two arbitrarily selected nodes in a breast-shaped finite element mesh,

highlighting the irregular structure of these sparse matrices.
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T i; :ð Þ
1
nvelð Þ

¼
X
j¼1:4

Lði; j; :Þ
1
nvelð Þ

: � Ueðj; :Þ
1
nvelð Þ

for i ¼ 1::4; ð67Þ

oU
ope
d
nvelð Þ

¼
X
i¼1::4

Weði; :; :Þ½ �
d
nvelð Þ

: �

T ði; :Þ
T ði; :Þ
� � �
T ði; :Þ

2664
3775

d
nvelð Þ

; ð68Þ

where K is the appropriate 4
 4
 nvel kernal matrix from (62), ðoC=opÞje is the appropriate analytical
derivative of a coefficient C (as identified in Eqs. (49)–(51)) evaluated at each element, L and T are tem-

porary matrices, Ue is a 4
 nvel matrix such that the four rows contain the four nodal values of U for each
of the nvel elements in the FE mesh, and We is a 4
 d 
 nvel matrix such that the four rows contain the

Fig. 3. A pictorial depiction of the vectorized operations in equations (66) (first row), (67) (second row), and (68) (third row). Note that

in some cases the graphical orientation of the matrices has been altered to make the depiction easier to follow.
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four nodal vectors of W (each of length d), for each of the nvel elements in the FE mesh. As before, in Eqs.

(66)–(68) we have adopted the Matlab notations for element-by-element multiplication (.*) and matrix

slicing along an entire dimension (:). Note that, in contrast to Eq. (65) where we must loop n times

(n ¼ number of nodes), in this implementation we now loop only 16 times for the pseudo-code specified in

(66) and (67) and only four times for the pseudo-code shown in (68), regardless of the size or geometry of

the mesh. All operations are completely vectorized over the largest dimension (nvel). These vectorized
operations for computing elemental sensitivities are depicted in Fig. 3. In order to convert back to nodal

sensitivities, we recognize that the total variation at a node is the sum of one quarter of the variations of
each element attached to that node. We thus trivially implement the conversion from elemental to nodal

sensitivities by multiplying the elemental sensitivity matrix ðd 
 nvelÞ by a precomputed constant sparse

Fig. 4. Elemental sensitivities are converted to nodal sensitivities by simply multiplying by an adjacency matrix E2N that contains the

value 0.25 in the positions corresponding to element-node adjacencies.

Fig. 5. The depiction of the vectorized operations for Eq. (68) shows that the unhatched and hatched regions may be computed in-

dependently, making it easy to decompose the computations into arbitrarily small vectorized subsets of (a) detectors and/or (b) elements.
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adjacency matrix ðnvel
 nÞ that has the value 0.25 in locations corresponding to element-node adjacencies
and is 0 elsewhere (Fig. 4). Experiments confirm that nodal sensitivities computed by the nodal loop in (65)

are identical to elemental sensitivities computed by the approach of (67) that are then transformed back to

nodal sensitivities. Although the vectorized approach is more space intensive than the loop approach, the

memory requirements are easily managed by decomposing the computations for pseudo-code (68) into

smaller independent chunks of elements and/or of detectors,as shown in Fig. 5.

The vectorized implementations described here were implemented in Matlab, which facilitates vector-

ization by providing users with high-level programming abstractions of whole-matrix operations. These
vectorized operations are efficiently implemented by calling hardware-optimized BLAS routines [42] that

take advantage of pipelining in the microprocessor architecture. Vectorization using the same algorithms

described here is also possible when programming in C or Fortran, although there the burden is on the

applications programmer to access the appropriate BLAS routines.

6. Numerical experiments

In order to compare the accuracy and efficiency of the various methods for computing the sensitivities we

compared results on a 4
 8
 8 cm3 synthetic domain, with coordinate ranges h�2::2;�4::4;�4::4i cm.
The size, shape, and optical properties of this domain were chosen to model an existing experimental tissue-

mimicking phantom used for experiments in fluorescence tomography using the fluorophore indocyanine

green [8], with excitation k ¼ 785 nm and emission k ¼ 830 nm at x ¼ 100 MHz modulation frequency.

Background optical properties were modeled as homogeneous with the following values: laxf ¼ 0:006 cm�1,

lamf ¼ 0:0846 � laxf , laxi ¼ 0:031 cm�1, lami ¼ 0:7987 � laxi, l0
sx ¼ 10:95 cm�1, l0

sm ¼ 0:732 � l0
sx, s ¼ 0:56 ns,

/ ¼ 0:016; Rx;m ¼ 0:431 on the top and Rx;m ¼ 0:0222 on the other five sides.
A laser excitation light source was modeled on the surface at h�2;�1; 1i cm. Simulated measurements of

emission fluence were predicted at 50 detector locations on the exterior. Experiments were run using our

finite element model with three different levels of discretization in the mesh, as shown in Table 1.

The size of the large mesh is commensurate with realistic mesh sizes for 3-D problems of clinical interest.

6.1. Timing studies

Three sets of timing studies on the small, medium, and large meshes are presented. All timings were

performed on a 2.2 GHz Pentium IV with 2 GB RAM.

6.1.1. Vectorization of global finite element matrix assembly

Timings for matrix assembly of the Ax matrix using both the vectorized and loop implementations are
shown in Table 2 and Fig. 6(a).

Not only was the vectorized implementation much faster than the loop method, but the speedup due to

vectorization continued to increase with increasing mesh size (Table 2, Fig. 6(b). On the large mesh, the

speedup of 6.5 means being able to assemble each global matrix in under 5 s, rather than over 30 s. Since

Table 1

Three finite element meshes used to discretize the domain

FE mesh Spacing (cm) # Nodes # Elements

Small 0.5 405 1536

Medium 0.25 2601 12,288

Large 0.125 18,513 98,304
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several global matrices must be reassembled during each iteration of a tomography code, vectorization of

matrix assembly can indeed yield significant savings in computation time.

6.1.2. Vectorization of adjoint sensitivity calculations

Computations for the adjoint sensitivities for emission fluence with respect to fluorescence absorption

oUm=olaxf , from the already computed adjoint field variables W; were timed for both the vectorized (66)–
(68) and loop (65) implementations (Table 3, Fig. 6(c). The loop implementation did utilize vectorized

matrix assembly for global matrices in dA (50), so that these times reflect only the speedup due to (indi-
rectly) vectorizing the loop shown in statement (65).

Appropriate selection of the number of subdomains of elements used in computing the vectorized code is

determined by the amount of available memory and the size of the problem (elements times detectors). On

Table 2

Computation times for global matrix assembly using vectorized and loop implementations

FE mesh Vectorized (s) Loop (s) Speedup

Small 0.079 0.171 2.2

Medium 0.578 1.691 2.9

Large 4.828 31.219 6.5

Fig. 6. (a) CPU times for assembly of one global matrix; (b) speedup of global matrix assembly due to vectorization; (c) CPU times for

calculation of sensitivity; (d) speedup of sensitivity calculation due to vectorization.

Table 3

Computation times for the sensitivity calculations using vectorized and loop implementations

FE mesh Vectorized (min) # Subdomains Loop (min) Speedup

Small 0.019 2 0.191 10.6

Medium 0.137 13 13.227 96.5

Large 1.092 104 548.180 502.0
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our system, optimal times were achieved with the vectorized code when the domain was decomposed into

subdomains of elements such that the number of subdomain elements times the number of detectors was

approximately 47,300. The number of subdomains used in timing the vectorized code for each mesh size is

indicated in Table 3. Run times for the vectorized code took up to 50% longer when too many or too few

subdomains were employed, presumably cache and/or virtual memory was not optimally utilized. Memory

constraints precluded the largest problem from running with fewer than three subdomains, but the use of

domain decomposition prevents memory becoming a limiting factor, regardless of the mesh size. The non-

vectorized code was more memory efficient and thus did not require any decomposition into subdomains.
Vectorization of the matrix products required for computing sensitivities from solutions to the adjoint

field variables W yielded even more dramatic improvements in computation time than did vectorization of

matrix assembly. Here, speedups due to vectorization increased from 10.6 on the small mesh to 502 on the

large mesh (Table 3, Fig. 6(d). On the large mesh, computation of emission sensitivities with respect to

fluorescence absorption oUm=olaxf took only about 1 min using the vectorized approach, but required over
9 h using the loop approach, even though the loop method was implemented to utilize the vectorized matrix

assembly! As with matrix assembly, these sensitivity calculations must be performed during each iteration

of a tomography algorithm, so the computational savings of the vectorized approach become enormous.
This superscalar execution on a single processor system seems quite remarkable, but is readibly

achievable by writing code that takes maximal advantage of low-level microprocessor architecture via

hardware-optimized BLAS routines [42]. The vectorization and domain decomposition approaches pre-

sented here are also naturally amenable to parallelization, and parallel implementations could offer even

further computational benefits.

6.1.3. Adjoint vs. finite difference methods

Numerical results of the emission sensitivities computed by the adjoint method and the finite difference

method were identical, to within the accuracy specified for the iterative conjugate gradient squared solver

(1e) 9), for a variety of parameters tested (laxf ; laxi; l0
sx; s;/;). While our main intention in using the finite

difference approach to computing sensitivities was to thus validate the accuracy of our adjoint sensitivity

equations, it is also informative to compare computation times in order to appreciate just how much is
gained by the adjoint approach. Timings for computing the sensitivities of emission fluence with respect to

fluorescence absorption using both the adjoint method and a first-order finite difference method (1) are

shown in Table 4. Both methods utilized vectorization of matrix assembly, and the adjoint method also

utilized vectorization of the matrix products required for the adjoint sensitivitiy calculations, so that these

times reflect the comparison between our fastest implementations of each approach.

The finite difference approach required nearly 6 days of computation time to compute a Jacobian for the

large mesh. Recalling that these sensitivities must be recomputed for each source and each iteration of a

tomography application, these times are indeed prohibitive. In contrast, our vectorized adjoint method
required just over 3 min for computation of this large (50
 98304Þ Jacobian sensitivity matrix, rendering
the least-squares tomography problem computationally feasible.

Table 4

Total computation times for calculating sensitivities using our implementations of the adjoint method and the first-order finite dif-

ference method

FE mesh Adjoint (min) Finite difference (min) Speedup

Small 0.033 5.697 170.8

Medium 0.290 94.807 327.4

Large 3.247 8557.635 2635.4
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6.2. Application of the adjoint sensitivities

We have incorporated our vectorized implementation of the full adjoint sensitivity calculations for

complex emission fluenceUm with respect to fluorescence absorption laxf into a 3-D fluorescence tomography

code and have used it to reconstruct 3-Dmaps of fluorescence absorption from emission measurements taken

on 3-D tissue-mimicking phantoms, as reported in [9]. In these experiments, a 1087 cc tissue-mimicking

phantomwas modeled with a 6956 node (34,413 element) FEMmesh, with an average node spacing of 0.5 cm

in the 10 cm diameter hemispherical ‘‘breast’’ portion of the model. In one representative experiment, we used

a fast version of the Bayesian approximate extended Kalman filter [43] to invert 429 frequency-domain

emission measurements of emission fluence collected on a phantom containing a 1 cc embedded fluorescent
target with a 100:1 target:background ratio in Indocyanine Green. The correct target location was identifi-

able after the first iteration (7 min), and this inversion converged (exhibited less that a 1% decrease in model

prediction error) after 18 iterations (2 h). For this problem, there were a total of 224 forward solutions

required during each iteration (for the predictions of fluence at both excitation ðUxÞ and emission ðUmÞ
wavelengths for seven excitation sources, and for the adjoint variables Wxm and Wmm at 105 detector

locations); these solutions were obtained sequentially by calling Matlab�s conjugate gradients squared

function (cgs.m). Each subsequent iteration of the inverse algorithm required 6.5 min, partioned between the

various tasks as follows: 1.0% for building all global FEM matrices, 15.1% for solving for all primary and
adjoint variables, 81.3% for performing the adjoint sensitivity calculations, 0.6% for the filter update, and

Fig. 7. A 12,657 node (65,509 element) hemispherical 3-D finite element mesh with a uniformly low fluorescence absorption laxf of 0.006
cm�1. We have plotted the maximum absolute value of complex sensitivity of emission fluenceUm with respect to fluorescence absorption

laxf at each node, for the closest of 129 detectors evenly spaced around the surface of the hemisphere, in response to an excitation light
source at the top of the hemisphere (i.e., we have plotted the column-wise maxima of the absolute value of dUm=dlaxf ). The node at
h0; 0; 2:5i is marked by a white circle and is further described in Fig. 8. Note that the gray scale for sensitivities is logarithmic.
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2.0% for other miscellaneous tasks. Clearly, the Jacobian calculations remain the computational bottleneck.
This model was decomposed into 120 subdomains to avoid exceeding available memory. Details of the data

collection and tomographic reconstruction are in [9]. Elsewhere [44], we show that the previously proposed

approximate adjoint method [10] overestimates the sensitivity of emission fluence Um with respect to

fluorescence absorption laxf , and that the full adjoint sensitivities derived here result in more accurate re-
constructions of fluorescent targets. Sensitivities for a hemi-spherical model are shown in Figs. 7 and 8. These

already low sensitivites are shown to fall off exponentially with distance from source and detectors, con-

tributing to the difficulty of accurately solving the inverse problem of fluorescence tomography in large tissue

volumes. The close agreement between finite difference and adjoint sensitivity calculations (Fig. 8) validates
the accuracy of the derived adjoint sensitivity equations presented herein.

7. Summary

In order for fluorescence tomography using nonlinear least-squares approaches to become a practical

modality for imaging large tissue volumes, there must be an accurate and computationally efficient means

of computing coupled sensitivities of excitation and emission fluence with respect to various optical
properties that are to be estimated. In this paper, we make several contributions. (1) We develop full adjoint

solutions for the coupled complex sensitivities of excitation and emission fluence with respect to any ar-

bitrary optical parameters of interest, (2) we develop a finite element discretization of the adjoint sensitivity

equations, (3) we show that the continuous and discrete FEM formulations of the sensitivities are equiv-

alent for the fluorescence equations, (4) we validate our adjoint sensitivity calculations by comparison with

sensitivities calculated by finite differences, (5) we describe a vectorized implementation of global finite

element matrix assembly that is applicable to any finite element model, and we show that the vectorized

implementation is 6.5 times faster (on a 2.2 GHz Pentium IV) than a traditional loop implementation on a

Fig. 8. Absolute values of complex sensitivities, for the data point marked with the white circle in the hemispherical breast model

shown in Fig. 7, at all 129 surface detector locations are seen to drop off exponentially with distance between the node at the detectors

(since distance to source is constant). Adjoint sensitivities matched finite difference sensitivity approximations to within the accuracy of

the solver (1e) 9).
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98,304 element mesh, and (6) we propose a novel implementation of adjoint sensitivity calculations that is

highly vectorized and uses domain decomposition to keep memory requirements manageable, and show

that our vectorized implementation is 502 times faster than a traditional loop implementation on a 98,304

element mesh with 50 detector locations.

The superscalar speedup achieved by our vectorized code underscores how software development has

lagged behind hardware development; traditional software implementations often drastically underutilize

current microprocessor capabilities. While vectorizing code is often non-intuitive and may entail the use of

extra computer memory and program development and debugging time, the resulting runtime speedups can
be dramatic and may be well worth the up-front costs for programs with repeated time-intensive calcu-

lations. Programming environments like Matlab that provide high-level programmer interfaces to low-level

vectorized operations can help to dramatically reduce the program development costs associated with

vectorization significantly, but the vectorized algorithms described herein may also be implemented in C or

Fortran for significant computational savings, by calling the appropriate optimized BLAS routines. Re-

gardless of the language, the vectorized algorithm design, like parallel algorithm design, must still come

from the programmer.

While the methodologies proposed in this paper are developed in the context of fluorescence tomog-
raphy, they are easily generalized for computing sensitivities of other coupled elliptic equations. For ex-

ample, in the context of steady state transport, the zeroth-order terms in our general equations can

represent the production and decay of chemicals. Similarly, the equations for groundwater flow of im-

miscible fluids can be modeled by these equations, as can solid mechanics problems of connected materials

with different properties. The coupling of heat transport and electric potential also have their basic form

described by these equations. We envision numerous applications of our methodology, with only minor

changes to the present code, that can be useful in a broad range of physical phenomena.
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